
10
Geometr ic
Algor ithms

Do not disturb my circles!

— Archimedes (287–212 B.C.E.)

Geometry needs no introduction. This most visual branch of mathematics is used
whenever you see pictures on your computer screen, and in this chapter we’ll
explor e algorithms useful for tasks such as these:

Web image maps
How can you tell whether the mouse click fell within an oddly shaped area?
See the section “Inclusion.”

Arranging windows
How do you open up new windows so that they obscure existing windows as
little as possible? See the section “Boundaries.”

Cartography
You have a set of scattered points (say, fenceposts) and want to draw the
region that they define. See the section “Boundaries.”

Simulations
Which pair of 10,000 points are closest to each other and therefor e in danger
of colliding? See the section “Closest Pair of Points.”

In this chapter, we explor e geometric formulas and algorithms. We can only pro-
vide building blocks for you to improve upon; as usual, we can’t anticipate every
use you’ll have for these techniques. We’ll restrict ourselves to two dimensions in
almost all of the code we show. We don’t cover the advanced topics you’ll find in
a book devoted solely to computer graphics, such as ray tracing, radiosity, lighting,
animation, or texture mapping, although we do cover splines in the section
“Splines” in Chapter 16, Numerical Analysis. For deeper coverage of these topics,
we recommend Computer Graphics: Principles and Practice, by Foley, van Dam,

425

6 August 1999 15:40

426 Chapter 10: Geometric Algor ithms

Feiner, and Hughes, and the Graphics Gems books. Those of a more practical per-
suasion will find information about windowing toolkits, business graphs, OpenGL
(a 3-D graphics language) and VRML (Virtual Reality Markup Language) at the end
of the chapter.

For simplicity, almost all the subroutines in this chapter accept coordinates as flat
lists of numbers. To inter face with your existing programs, you might want to
rewrite them so that you can pass in your points, lines, and polygons as array or
hash refer ences. If you have a lot of them, this will be faster as well. See the sec-
tion “References” in Chapter 1, Intr oduction, for more infor mation.

One last caveat: Many geometric problems have nasty special cases that requir e
special attention. For example, many algorithms don’t work for concave objects, in
which case you’ll need to chop them into convex pieces before applying the algo-
rithms. Complicated objects like people, trees, and class F/X intergalactic dread-
noughts fighting huge tentacled monsters from Orion’s Belt are frequently
repr esented as polygons (typically triangles, or tetrahedrons for three dimensions),
and collisions with them are checked using bounding boxes convex hulls. Mor e
about these later in the chapter.

Distance
One of the most basic geometric concepts is distance : the amount of space
between two objects.

Euc lidean Distance
Ther e ar e many ways to define the distance between two points; the most intuitive
and common definition is Euclidean distance : the straight-line distance, as the
cr ow flies.* In mathematical terms, we compute the differ ences along each axis,
sum the squares of the differ ences, and take the square root of that sum. For two

dimensions, this is the familiar Pythagor ean theor em : d = √ (x1 − x0)2 + (y1 − y0)2. †

Figur e 10-1 illustrates the Euclidean distance in differ ent dimensions. The last two
cases are mer e pr ojections onto the printed page; the last one doubly so.

We can compute the Euclidean distance of any dimension with a single subrou-
tine, as follows:

distance(@p) computes the Euclidean distance between two
d-dimensional points, given 2 * d coordinates. For example, a pair of
3-D points should be provided as ($x0, $y0, $z0, $x1, $y1, $z1).

* Euclid: fl. 370 B.C.E.

† Pythagoras 570–490 B.C.E.

6 August 1999 15:40

Figur e 10-1. Euclidean distance in 1, 2, 3, and 4 dimensions

sub distance {
my @p = @_; # The coordinates of the points.
my $d = @p / 2; # The number of dimensions.

The case of two dimensions is optimized.
return sqrt(($_[0] - $_[2])**2 + ($_[1] - $_[3])**2)

if $d == 2;

my $S = 0; # The sum of the squares.
my @p0 = splice @p, 0, $d; # The starting point.

for (my $i = 0; $i < $d; $i++) {
my $di = $p0[$i] - $p[$i]; # Difference...
$S += $di * $di; # ...squared and summed.

}

return sqrt($S);
}

The Euclidean distance between the points (3, 4) and (10,12) is this:

print distance(3,4, 10,12);
10.6301458127346

Manhattan Distance
Another distance metric is the Manhattan distance, depicted in Figure 10-2. This
name reflects the rigid rectangular grid on which most of Manhattan’s streets are
arranged; good New York cabbies routinely think in terms of Manhattan distance.
Helicopter pilots are mor e familiar with Euclidean distance.

Instead of squaring the differ ences between points, we sum their absolute values:

manhattan_distance(@p)
Computes the Manhattan distance between
two d-dimensional points, given 2*d coordinates. For example,
a pair of 3-D points should be provided as @p of
($x0, $y0, $z0, $x1, $y1, $z1).

Distance 427

6 August 1999 15:40

428 Chapter 10: Geometric Algor ithms

Figur e 10-2. Manhattan distance

sub manhattan_distance {
my @p = @_; # The coordinates of the points.
my $d = @p / 2; # The number of dimensions.

my $S = 0; # The sum of the squares.
my @p0 = splice @p, 0, $d; # Extract the starting point.

for (my $i = 0; $i < $d; $i++) {
my $di = $p0[$i] - $p[$i]; # Difference...
$S += abs $di; # ...absolute value summed.

}

return $S;
}

For example, here is the Manhattan distance between (3, 4) and (10, 12):

print manhattan_distance(3, 4, 10, 12);
15

Maximum Distance
Sometimes the distance is best defined simply as the maximum coordinate differ-
ence: d = max di, wher e di is the i th coordinate differ ence.

If you think of the Manhattan distance as a degree-one approximation of the dis-
tance (because the coordinate differ ences ar e raised to the power of 1), then the
Euclidean distance is a degree-two approximation. The limit of that sequence is
the maximum distance:

In other words, as k incr eases, the largest differ ence incr easingly dominates, and at
infinity it completely dominates.

6 August 1999 15:40

Spher ical Distance
The shortest possible distance on a spherical surface is called the gr eat cir cle dis-
tance. Deriving the exact formula is good exercise in trigonometry, but the pro-
grammer in a hurry can use the great_circle_distance() function in the
Math::Trig module bundled with Perl 5.005_03 and higher. You’ll find Math::Trig in
earlier versions of Perl, but they won’t have great_circle_distance(). Her e’s how
you’d compute the approximate distance between London (51.3° N, 0.5° W) and
Tokyo (35.7° N, 139.8° E) in kilometers:

#!/usr/bin/perl

use Math::Trig qw(great_circle_distance deg2rad);

Notice the 90 minus latitude: phi zero is at the North Pole.
@london = (deg2rad(- 0.5), deg2rad(90 - 51.3));
@tokyo = (deg2rad(139.8), deg2rad(90 - 35.7));

6378 is the equatorial radius of the Earth, in kilometers.
print great_circle_distance(@london, @tokyo, 6378);

The result is:

9605.26637021388

We subtract the latitude from 90 because great_circle_distance() uses azimuthal
spherical coordinates: φ = 0 points up from the North Pole, whereas on Earth it
points outward from the Equator. Thus we need to tilt the coordinates by 90
degr ees. (See the Math::Trig documentation for more infor mation.)

The result is far from exact, because the Earth is not a perfect sphere and because
at these latitudes 0.1 degrees is about 8 km, or 5 miles.

Area, Per imeter, and Volume
Once we feel proficient with distance, we can start walking over areas and
perimeters, and diving into volumes.

Tr iangle
The area of the triangle can be computed with several formulas, depending on
what parts of the triangle are known. In Figure 10-3, we present one of the oldest,
Her on’s for mula.*

* Her on lived around 65–120.

Area, Per imeter, and Volume 429

6 August 1999 15:40

430 Chapter 10: Geometric Algor ithms

a+b+c
2

(s - a) (s - b) (s - c)

s =a

b

c

Figur e 10-3. Heron’s formula computes the area of a triangle given the lengths of the sides

Our code to implement Heron’s formula can accept either the side lengths of the
triangle, or its vertices—in which case triangle_area_heron() computes the side
lengths using the Euclidean distance:

#!/usr/bin/perl

triangle_area_heron($length_of_side,
$length_of_other_side,
$length_of_yet_another_side)
Or, if given six arguments, they are the three (x,y)
coordinate pairs of the corners.
Returns the area of the triangle.

sub triangle_area_heron {
my ($a, $b, $c);

if (@_ == 3) { ($a, $b, $c) = @_ }
elsif (@_ == 6) {

($a, $b, $c) = (distance($_[0], $_[1], $_[2], $_[3]),
distance($_[2], $_[3], $_[4], $_[5]),
distance($_[4], $_[5], $_[0], $_[1]));

}

my $s = ($a + $b + $c) / 2; # The semiperimeter.
return sqrt($s * ($s - $a) * ($s - $b) * ($s - $c));

}

print triangle_area_heron(3, 4, 5), " ",
triangle_area_heron(0, 1, 1, 0, 2, 3), "\n";

This prints:

6 2

Polygon Area
The area of a convex polygon (one that doesn’t “bend inwards”) can be computed
by slicing the polygon into triangles and then summing their areas, as shown in
Figur e 10-4.

6 August 1999 15:40

hole

Figur e 10-4. Concave and convex polygons, sliced into triangles

For concave polygons, the situation is messier: we have to ignore the “holes.” A
much easier way is to use determinants (see the section “Computing the Determi-
nant” in Chapter 7, Matrices), as shown in Figure 10-5 and the following equation:

Figur e 10-5. How the determinants yield the area

Each determinant yields the area of the rectangle defined by two of the polygon
vertices. Since each edge of the polygon bisects the rectangle, we want to halve
each area. The overlap of rectangles (the lower left in Figure 10-5) can be ignored
because they conveniently cancel one another.

Notice how the formula wraps around from the last point, (xn−1, yn−1), back to the
first point, (x0, y0). This is natural; after all, we want to traverse all n edges of the
polygon, and therefor e we had better sum exactly n deter minants. We just need
the determinant of a 2 × 2 matrix, which is simply:

Area, Per imeter, and Volume 431

6 August 1999 15:40

432 Chapter 10: Geometric Algor ithms

determinant($x0, $y0, $x1, $y1)
Computes the determinant given the four elements of a matrix
as arguments.
#
sub determinant { $_[0] * $_[3] - $_[1] * $_[2] }

Ar med with the determinant, we’re ready to find the polygon area:

polygon_area(@xy)

Compute the area of a polygon using determinants. The points
are supplied as ($x0, $y0, $x1, $y1, $x2, $y2,)
#

sub polygon_area {
my @xy = @_;

my $A = 0; # The area.

Instead of wrapping the loop at its end
wrap it right from the beginning: the [-2, -1] below.
for (my ($xa, $ya) = @xy[-2, -1];

my ($xb, $yb) = splice @xy, 0, 2;
($xa, $ya) = ($xb, $yb)) { # On to the next point.

$A += determinant($xa, $ya, $xb, $yb);
}

If the points were listed in counterclockwise order, $A
will be negative here, so we take the absolute value.

return abs $A / 2;
}

For example, we can find the area of the pentagon defined by the five points
(0, 1), (1, 0), (3, 2), (2, 3), and (0, 2) as follows:

print polygon_area(0, 1, 1, 0, 3, 2, 2, 3, 0, 2), "\n";

The result:

2

Note that the points must be listed in clockwise or counterclockwise order; see the
section “Direction” for more about what that means. If you list them in another
order, you'r e describing a differ ent polygon:

print polygon_area(0, 1, 1, 0, 2, 0, 3, 2, 2, 3), "\n";

Moving the last point to the middle yields a differ ent result:

1

6 August 1999 15:40

Polygon Per imeter
The same loop used to compute the polygon area can be used to compute the
polygon perimeter. Now we just sum the lengths instead of the determinants:

polygon_perimeter(@xy)

Compute the perimeter length of a polygon. The points
are supplied as ($x0, $y0, $x1, $y1, $x2, $y2,)
#

sub polygon_perimeter {
my @xy = @_;

my $P = 0; # The perimeter length.

Instead of wrapping the loop at its end
wrap it right from the beginning: the [-2, -1] below.
for (my ($xa, $ya) = @xy[-2, -1];

my ($xb, $yb) = splice @xy, 0, 2;
($xa, $ya) = ($xb, $yb)) { # On to the next point.

$P += distance($xa, $ya, $xb, $yb);
}

return $P;
}

We can find the perimeter of the pentagon from the last example as follows:

print polygon_perimeter(0, 1, 1, 0, 3, 2, 2, 3, 0, 2), "\n";

The result:

8.89292222699217

Direction
We need to know which objects are right of us (clockwise) or left of us (counter-
clockwise), this is useful, for example, in finding out whether a point is inside a tri-
angle or not. We’ll restrict ourselves to two dimensions in our discussion; in three
dimensions the meaning of “left” and “right” is ambiguous without knowing which
way is up.

Given any three points, you can specify whether they follow a clockwise path, a
counterclockwise path, or neither. In Figur e 10-6, the points at (1, 1), (4, 3), and
(4, 4) specify a counterclockwise path: the path turns left. The points (1, 1), (4, 3),
and (7, 4), specify a clockwise path: the path turns right.

The clockwise() subr outine accepts three points, and retur ns a single number:
positive if the path traversing all three points is clockwise, negative if it’s counter-
clockwise, and a number very close to 0 if they’re neither clockwise nor counter-
clockwise — that is, all on the same line.

Direction 433

6 August 1999 15:40

434 Chapter 10: Geometric Algor ithms

y

x

left 4,4

4,3

right

7,5

7,4

1,1

Figur e 10-6. Clockwise and counterclockwise: right and left

clockwise($x0, $y0, $x1, $y1, $x2, $y2)
Return positive if one must turn clockwise (right) when moving
from p0 (x0, y0) to p1 to p2, negative if counterclockwise (left).
It returns zero if the three points lie on the same line --
but beware of floating point errors.
#
sub clockwise {

my ($x0, $y0, $x1, $y1, $x2, $y2) = @_;
return ($x2 - $x0) * ($y1 - $y0) - ($x1 - $x0) * ($y2 - $y0);

}

For example:

print clockwise(1, 1, 4, 3, 4, 4), "\n";
print clockwise(1, 1, 4, 3, 7, 5), "\n";
print clockwise(1, 1, 4, 3, 7, 4), "\n";

will output:

-3
0
3

In other words, the point (4, 4) is left (negative) of the vector from (1, 1) to (4, 3),
the point (7, 5) is on (zer o) the same vector, and the point (7, 4) is right (positive)
of the same vector.

6 August 1999 15:40

clockwise() is actually a flattened two-dimensional version of the cr oss pr oduct of
vector algebra. The cross product is a three-dimensional object, pointing away
fr om the plane defined by the vectors p0 − p1 and p1 − p2.

Inter section
In this section, we’ll make frequent use of epsilon() for our floating point compu-
tations. Epsilon is for you to decide; we recommend one ten-billionth:

sub epsilon () { 1E-10 }

or the faster version:

use constant epsilon => 1E-10;

See the section “Precision” in Chapter 11, Number Systems, for more infor mation.

Line Intersection
Ther e ar e two flavors of line intersection. In the general case, the lines may be of
any slope. In the more restricted case, the lines are confined to horizontal and ver-
tical slopes, and these are called Manhattan intersections.

Line intersection: the general case

Finding the intersection of two lines is as simple as finding out when the two lines
y0 = b0x + a0 and y1 = b1x + a1 cr oss, and the techniques in the section “Gaussian
Elimination” in Chapter 7 and the section “Solving Equations” in Chapter 16 can
find the answer for us. But those general techniques won’t always work: if we are
to avoid divide-by-zero err ors, we need to look out for situations in which either
line is horizontal or vertical, or when the lines are parallel. Figure 10-7 illustrates
some differ ent line intersections.

(x3, y3)

(x1, y1)

(x0, y0)

(x, y)

(x2, y2)

Figur e 10-7. Line intersection: general case, horizontal and vertical cases, parallel case

Inter section 435

6 August 1999 15:40

436 Chapter 10: Geometric Algor ithms

With all the special cases, line intersection isn’t as straightforward as it might seem.
Our implementation is surprisingly long:

line_intersection($x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3)
#
Compute the intersection point of the line segments
(x0,y0)-(x1,y1) and (x2,y2)-(x3,y3).
#
Or, if given four arguments, they should be the slopes of the
two lines and their crossing points at the y-axis. That is,
if you express both lines as y = ax+b, you should provide the
two 'a's and then the two 'b's.
#
line_intersection() returns either a triplet ($x, $y, $s) for the
intersection point, where $x and $y are the coordinates, and $s
is true when the line segments cross and false when the line
segments don't cross (but their extrapolated lines would).
#
Otherwise, it's a string describing a non-intersecting situation:
"out of bounding box"
"parallel"
"parallel collinear"
"parallel horizontal"
"parallel vertical"
Because of the bounding box checks, the cases "parallel horizontal"
and "parallel vertical" never actually happen. (Bounding boxes
are discussed later in the chapter.)
#
sub line_intersection {
my ($x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3);

if (@_ == 8) {
($x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3) = @_;

The bounding boxes chop the lines into line segments.
bounding_box() is defined later in this chapter.
my @box_a = bounding_box(2, $x0, $y0, $x1, $y1);
my @box_b = bounding_box(2, $x2, $y2, $x3, $y3);

Take this test away and the line segments are
turned into lines going from infinite to another.
bounding_box_intersect() defined later in this chapter.
return "out of bounding box"

unless bounding_box_intersect(2, @box_a, @box_b);
} elsif (@_ == 4) { # The parametric form.

$x0 = $x2 = 0;
($y0, $y2) = @_[1, 3];
Need to multiply by 'enough' to get 'far enough'.
my $abs_y0 = abs $y0;
my $abs_y2 = abs $y2;
my $enough = 10 * ($abs_y0 > $abs_y2 ? $abs_y0 : $abs_y2);
$x1 = $x3 = $enough;
$y1 = $_[0] * $x1 + $y0;
$y3 = $_[2] * $x2 + $y2;

6 August 1999 15:40

}

my ($x, $y); # The as-yet-undetermined intersection point.

my $dy10 = $y1 - $y0; # dyPQ, dxPQ are the coordinate differences
my $dx10 = $x1 - $x0; # between the points P and Q.
my $dy32 = $y3 - $y2;
my $dx32 = $x3 - $x2;

my $dy10z = abs($dy10) < epsilon; # Is the difference $dy10 "zero"?
my $dx10z = abs($dx10) < epsilon;
my $dy32z = abs($dy32) < epsilon;
my $dx32z = abs($dx32) < epsilon;

my $dyx10; # The slopes.
my $dyx32;

$dyx10 = $dy10 / $dx10 unless $dx10z;
$dyx32 = $dy32 / $dx32 unless $dx32z;

Now we know all differences and the slopes;
we can detect horizontal/vertical special cases.
E.g., slope = 0 means a horizontal line.

unless (defined $dyx10 or defined $dyx32) {
return "parallel vertical";

} elsif ($dy10z and not $dy32z) { # First line horizontal.
$y = $y0;
$x = $x2 + ($y - $y2) * $dx32 / $dy32;

} elsif (not $dy10z and $dy32z) { # Second line horizontal.
$y = $y2;
$x = $x0 + ($y - $y0) * $dx10 / $dy10;

} elsif ($dx10z and not $dx32z) { # First line vertical.
$x = $x0;
$y = $y2 + $dyx32 * ($x - $x2);

} elsif (not $dx10z and $dx32z) { # Second line vertical.
$x = $x2;
$y = $y0 + $dyx10 * ($x - $x0);

} elsif (abs($dyx10 - $dyx32) < epsilon) {
The slopes are suspiciously close to each other.
Either we have parallel collinear or just parallel lines.

The bounding box checks have already weeded the cases
"parallel horizontal" and "parallel vertical" away.

my $ya = $y0 - $dyx10 * $x0;
my $yb = $y2 - $dyx32 * $x2;

return "parallel collinear" if abs($ya - $yb) < epsilon;
return "parallel";

} else {
None of the special cases matched.
We have a "honest" line intersection.

Inter section 437

6 August 1999 15:40

438 Chapter 10: Geometric Algor ithms

$x = ($y2 - $y0 + $dyx10*$x0 - $dyx32*$x2)/($dyx10 - $dyx32);
$y = $y0 + $dyx10 * ($x - $x0);

}

my $h10 = $dx10 ? ($x - $x0) / $dx10 : ($dy10 ? ($y - $y0) / $dy10 : 1);
my $h32 = $dx32 ? ($x - $x2) / $dx32 : ($dy32 ? ($y - $y2) / $dy32 : 1);

return ($x, $y, $h10 >= 0 && $h10 <= 1 && $h32 >= 0 && $h32 <= 1);
}

Figur e 10-8 shows a collection of lines, illustrating the differ ent ways they can (and
cannot) intersect.

y

x
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Figur e 10-8. Line intersection example

We’ll examine six potential intersections with line_intersection():

print "@{[line_intersection(1, 1, 5, 5, 1, 4, 4, 1)]}\n";
print "@{[line_intersection(1, 1, 5, 5, 2, 4, 7, 4)]}\n";
print "@{[line_intersection(1, 1, 5, 5, 3, 0, 3, 6)]}\n";
print "@{[line_intersection(1, 1, 5, 5, 5, 2, 7, 2)]}\n";
print line_intersection(1, 1, 5, 5, 4, 2, 7, 5), "\n";
print line_intersection(1, 1, 5, 5, 3, 3, 6, 6), "\n";

The results:

2.5 2.5 1
4 4 1
3 3 1
2 2

6 August 1999 15:40

parallel
parallel collinear

Finding the exact point of intersection is too much work if all we care about
is whether two lines intersect at all. The intersection, if any, can be found by
examining the signs of the two cross products (p2 − p0) × (p1 − p0) and
(p3 − p0) × (p1 − p0). The line_intersect() subr outine retur ns a simple true or
false value indicating whether two lines intersect:

line_intersect($x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3)
Returns true if the two lines defined by these points intersect.
In borderline cases, it relies on epsilon to decide.

sub line_intersect {
my ($x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3) = @_;

my @box_a = bounding_box(2, $x0, $y0, $x1, $y1);
my @box_b = bounding_box(2, $x2, $y2, $x3, $y3);

If even the bounding boxes do not intersect, give up right now.

return 0 unless bounding_box_intersect(2, @box_a, @box_b);

If the signs of the two determinants (absolute values or lengths
of the cross products, actually) are different, the lines
intersect.

my $dx10 = $x1 - $x0;
my $dy10 = $y1 - $y0;

my $det_a = determinant($x2 - $x0, $y2 - $y0, $dx10, $dy10);
my $det_b = determinant($x3 - $x0, $y3 - $y0, $dx10, $dy10);

return 1 if $det_a < 0 and $det_b > 0 or
$det_a > 0 and $det_b < 0;

if (abs($det_a) < epsilon) {
if (abs($det_b) < epsilon) {

Both cross products are "zero".
return 1;

} elsif (abs($x3 - $x2) < epsilon and
abs($y3 - $y2) < epsilon) {

The other cross product is "zero" and
the other vector (from (x2,y2) to (x3,y3))
is also "zero".
return 1;

}
} elsif (abs($det_b < epsilon)) {

The other cross product is "zero" and
the other vector is also "zero".
return 1 if abs($dx10) < epsilon and abs($dy10) < epsilon;

}

Inter section 439

6 August 1999 15:40

440 Chapter 10: Geometric Algor ithms

return 0; # Default is no intersection.
}

We’ll test line_intersect() with two pairs of lines. The first pair intersects at
(3, 4), and the second pair of lines do not intersect at all because they’re parallel:

print "Intersection\n"
if line_intersect(3, 0, 3, 6, 1, 1, 6, 6);

print "No intersection\n"
unless line_intersect(1, 1, 6, 6, 4, 2, 7, 5);

Intersection
No intersection

Line intersection: the horizontal-ver tical case

Often, the general case of line intersection is too general: if the lines obey Manhat-
tan geometry, that is, if they’re strictly horizontal or vertical, a very differ ent solu-
tion for finding the intersections is available.

The solution is to use binary trees, which were intr oduced in Chapter 3, Advanced
Data Structures. We will slide a horizontal line from bottom to top over our plane,
constructing a binary tree of lines as we do so. The resulting binary tree contains
vertical lines sorted on their x-coordinate; for this reason, the tree is called an
x-tr ee. The x-tr ee is constructed as follows:

• The points will be processed from bottom to top, vertical lines before horizon-
tal ones, and from left to right. This means that both endpoints of a horizontal
line will be seen simultaneously, while the endpoints of a vertical line will be
seen separately.

• Whenever the lower endpoint of a vertical line is seen, that node is added to
the binary tree, with its x-coordinate as the value. This divides the points in
the tree in a left-right manner: if line a is left of line b, node a will be left of
node b in the tree.

• Whenever the upper endpoint of a vertical line is seen, the corresponding
node is deleted from the binary tree.

• Whenever a horizontal line is encountered, the nodes in the tree (the active
vertical lines) are checked to determine whether any of them intersect the hor-
izontal line. The horizontal lines are not added to the tree; their only duty is
to trigger the intersection checks.

Figur e 10-9 shows how an x-tr ee develops as the imaginary line proceeds from
the bottom of the picture to the top. The left picture simply identifies the order in
which line segments are encounter ed: first c, then e, and so on. The middle pic-
tur e shows the x-tr ee just after e is encountered, and the right picture after a and
d ar e encounter ed. Note that d is not added to the tree; it serves only to trigger an
intersection check.

6 August 1999 15:40

a

b

c

d

e

i

g

h

f

c

e

a

b

c

d

e

i

g

h

f

c

ea

a

b

c

d

e

i

g

h

f

c e a d i h b f g c h a e f

Figur e 10-9. Horizontal-vertical line intersection

The manhattan_intersection() subr outine implements this algorithm:

manhattan_intersection(@lines)
Find the intersections of strictly horizontal and vertical lines.
Requires basic_tree_add(), basic_tree_del(), and basic_tree_find(),
all defined in Chapter 3, Advanced Data Structures.
#
sub manhattan_intersection {

my @op; # The coordinates are transformed here as operations.

while (@_) {
my @line = splice @_, 0, 4;

if ($line[1] == $line[3]) { # Horizontal.
push @op, [@line, \&range_check_tree];

} else { # Vertical.
Swap if upside down.
@line = @line[0, 3, 2, 1] if $line[1] > $line[3];

push @op, [@line[0, 1, 2, 1], \&basic_tree_add];
push @op, [@line[0, 3, 2, 3], \&basic_tree_del];

}
}

my $x_tree; # The range check tree.
The x coordinate comparison routine.
my $compare_x = sub { $_[0]->[0] <=> $_[1]->[0] };
my @intersect; # The intersections.

foreach my $op (sort { $a->[1] <=> $b->[1] ||
$a->[4] == \&range_check_tree ||
$a->[0] <=> $b->[0] }
@op) {

if ($op->[4] == \&range_check_tree) {
push @intersect, $op->[4]->(\$x_tree, $op, $compare_x);

Inter section 441

6 August 1999 15:40

442 Chapter 10: Geometric Algor ithms

} else { # Add or delete.
$op->[4]->(\$x_tree, $op, $compare_x);

}
}

return @intersect;
}

range_check_tree($tree_link, $horizontal, $compare)

Returns the list of tree nodes that are within the limits
$horizontal->[0] and $horizontal->[1]. Depends on the binary
trees of Chapter 3, Advanced Data Structures.
#
sub range_check_tree {

my ($tree, $horizontal, $compare) = @_;

my @range = (); # The return value.
my $node = $$tree;
my $vertical_x = $node->{val};
my $horizontal_lo = [$horizontal->[0]];
my $horizontal_hi = [$horizontal->[1]];

return unless defined $$tree;

push @range, range_check_tree(\$node->{left}, $horizontal, $compare)
if defined $node->{left};

push @range, $vertical_x->[0], $horizontal->[1]
if $compare->($horizontal_lo, $horizontal) <= 0 &&

$compare->($horizontal_hi, $horizontal) >= 0;

push @range, range_check_tree(\$node->{right}, $horizontal,
$compare)

if defined $node->{right};

return @range;
}

manhattan_intersection() runs in O (N log N + k), where k is the number of inter-
sections (which can be no more than (N/2)2).

We’ll demonstrate manhattan_intersection() with the lines in Figure 10-10.

The lines in Figure 10-10 are stor ed in an array and tested for intersections as
follows:

@lines = (1, 6, 1, 3, 1, 2, 3, 2, 1, 1, 4, 1,
2, 4, 7, 4, 3, 0, 3, 6, 4, 3, 4, 7,
5, 7, 5, 4, 5, 2, 7, 2);

print join(" ", manhattan_intersection(@lines)), "\n";

6 August 1999 15:40

y

x
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Figur e 10-10. Lines for the example of Manhattan algorithm

We get:

3 1 3 2 1 4 3 4 4 4 5 4

This tells you the six points of intersection. For example, (3, 1) is the bottommost
intersection, and (5, 4) is the upper-rightmost intersection.

Inc lusion
In this section, we are inter ested in whether a point is inside a polygon. Once we
know that, we can conduct more sophisticated operations, such as determining
whether a line is partially or completely inside a polygon.

Point in Polygon
Deter mining whether a point is inside a polygon is a matter of casting a “ray” from
the point to “infinity” (any point known to be outside the polygon). The algorithm
is simple: count the number of times the ray crosses the polygon edges. If the
cr ossing happens an odd number of times (points e, f, h, and j in Figure 10-11),
we are inside the polygon; otherwise, we are outside (a, b, c, d, g, and i). There
ar e some tricky special cases (rare is the geometric algorithm without caveats):
What if the ray crosses a polygon vertex? (points d, f, g, and j) Or worse, an
edge? (point j) The algorithm we are going to use is guaranteed to retur n true for

Inc lusion 443

6 August 1999 15:40

444 Chapter 10: Geometric Algor ithms

truly inside points and false for truly outside points. For the borderline cases, it
depends on how the “glancing blows” are counted.

b
c
d
e
f
g
h
i
j

a
0 or 2
2
2 or 4
3
1 or 3
2 or 4
1
2
1 or 3 or 5

0

Figur e 10-11. Is the point in the polygon? Count the edge crossings

The point_in_polygon() subr outine retur ns a true value if the given point (the first
two arguments) is inside the polygon (described by the subsequent arguments).

point_in_polygon ($x, $y, @xy)
#
Point ($x,$y), polygon ($x0, $y0, $x1, $y1, ...) in @xy.
Returns 1 for strictly interior points, 0 for strictly exterior
points. For the boundary points the situation is more complex and
beyond the scope of this book. The boundary points are
exact, however: if a plane is divided into several polygons, any
given point belongs to exactly one polygon.
#
Derived from the comp.graphics.algorithms FAQ,
courtesy of Wm. Randolph Franklin.
#
sub point_in_polygon {

my ($x, $y, @xy) = @_;

my $n = @xy / 2; # Number of points in polygon.
my @i = map { 2 * $_ } 0 .. (@xy/2); # The even indices of @xy.
my @x = map { $xy[$_] } @i; # Even indices: x-coordinates.
my @y = map { $xy[$_ + 1] } @i; # Odd indices: y-coordinates.

my ($i, $j); # Indices.

my $side = 0; # 0 = outside, 1 = inside.

for ($i = 0, $j = $n - 1 ; $i < $n; $j = $i++) {
if (

(

6 August 1999 15:40

If the y is between the (y-) borders ...
(($y[$i] <= $y) && ($y < $y[$j])) ||
(($y[$j] <= $y) && ($y < $y[$i]))
)
and
...the (x,y) to infinity line crosses the edge
from the ith point to the jth point...
($x
<
($x[$j] - $x[$i]) *
($y - $y[$i]) / ($y[$j] - $y[$i]) + $x[$i])) {

$side = not $side; # Jump the fence.
}

}

return $side ? 1 : 0;
}

To detect whether the number of intersections is even or odd, we don’t actually
need to count them. We can do something much faster: simply toggle the Boolean
variable $side.

Using the polygon in Figure 10-12, we can test whether the nine points are inside
or outside as follows:

@polygon = (1, 1, 3, 5, 6, 2, 9, 6, 10, 0, 4,2, 5, -2);
print "(3, 4): ", point_in_polygon(3, 4, @polygon), "\n";
print "(3, 1): ", point_in_polygon(3, 1, @polygon), "\n";
print "(3,-2): ", point_in_polygon(3,-2, @polygon), "\n";
print "(5, 4): ", point_in_polygon(5, 4, @polygon), "\n";
print "(5, 1): ", point_in_polygon(5, 1, @polygon), "\n";
print "(5,-2): ", point_in_polygon(5,-2, @polygon), "\n";
print "(7, 4): ", point_in_polygon(7, 4, @polygon), "\n";
print "(7, 1): ", point_in_polygon(7, 1, @polygon), "\n";
print "(7,-2): ", point_in_polygon(7,-2, @polygon), "\n";

The results:

(3, 4): 1
(3, 1): 1
(3,-2): 0
(5, 4): 0
(5, 1): 0
(5,-2): 0
(7, 4): 0
(7, 1): 1
(7,-2): 0

This tells us that that the points (3, 4), (3, 1), and (7, 1) are inside the polygon,
and the rest are outside.

Inc lusion 445

6 August 1999 15:40

446 Chapter 10: Geometric Algor ithms

3,5

9,6

6,2

10,0

5,-2

1,1

4,2

x

y

Figur e 10-12. A sample polygon with some inside and outside points

Point in Triangle
For simple polygons such as triangles, we can use an alternative algorithm. We
start from a corner of the triangle and determine whether we have to look to the
left or right to see the point. Then we travel to the next corner and look at the
point. If the side we had to look to changed, we know that the point cannot be
within the triangle. We visit the final corner and check again; if the side still hasn’t
changed, we can safely conclude that the point is inside the triangle. Also, if we
detect that the point is on an edge, we can immediately retur n true.

In Figure 10-13, we can envision traveling counterclockwise around the vertices of
the triangle. Any point inside the triangle will be to our left. If the point is outside
the triangle, we’ll notice a change from left to right.

This algorithm is implemented in the point_in_triangle() subr outine:

point_in_triangle($x, $y, $x0, $y0, $x1, $y1, $x2, $y2) returns
true if the point ($x,$y) is inside the triangle defined by
the following points.

sub point_in_triangle {
my ($x, $y, $x0, $y0, $x1, $y1, $x2, $y2) = @_;

clockwise() from earlier in the chapter.
my $cw0 = clockwise($x0, $y0, $x1, $y1, $x, $y);
return 1 if abs($cw0) < epsilon; # On 1st edge.

my $cw1 = clockwise($x1, $y1, $x2, $y2, $x, $y);

6 August 1999 15:40

left

left

left

left
right

left

Figur e 10-13. Determining whether a point is inside a triangle

return 1 if abs($cw1) < epsilon; # On 2nd edge.

Fail if the sign changed.
return 0 if ($cw0 < 0 and $cw1 > 0) or ($cw0 > 0 and $cw1 < 0);

my $cw2 = clockwise($x2, $y2, $x0, $y0, $x, $y);
return 1 if abs($cw2) < epsilon; # On 3rd edge.

Fail if the sign changed.
return 0 if ($cw0 < 0 and $cw2 > 0) or ($cw0 > 0 and $cw2 < 0);

Jubilate!
return 1;

}

Let’s define a triangle with vertices at (1, 1), (5, 6), and (9, 3), and test seven
points for inclusion:

@triangle = (1, 1, 5, 6, 9, 3);
print "(1, 1): ", point_in_triangle(1, 1, @triangle), "\n";
print "(1, 2): ", point_in_triangle(1, 2, @triangle), "\n";
print "(3, 2): ", point_in_triangle(3, 2, @triangle), "\n";
print "(3, 3): ", point_in_triangle(3, 3, @triangle), "\n";
print "(3, 4): ", point_in_triangle(3, 4, @triangle), "\n";
print "(5, 1): ", point_in_triangle(5, 1, @triangle), "\n";
print "(5, 2): ", point_in_triangle(5, 2, @triangle), "\n";

The output:

(1, 1): 1
(1, 2): 0
(3, 2): 1
(3, 3): 1
(3, 4): 0
(5, 1): 0
(5, 2): 1

Inc lusion 447

6 August 1999 15:40

448 Chapter 10: Geometric Algor ithms

This tells us that the points (1, 2), (3, 4), and (5, 1) are outside the triangle and the
rest are inside.

Point in Quadrangle
Any convex quadrangle (a four-sided polygon—all squares and rectangles are
quadrangles) can be split into two triangles along any two opposing points. We
can combine this observation with the point_in_triangle() subr outine to deter-
mine whether a point is in the quadrangle. (Beware of degenerate quadrangles:
quadrangles that have overlapping corner points so that they reduce to triangles,
lines, or even points.) A split of a quadrangle into two triangles is illustrated in
Figur e 10-14.

Figur e 10-14. Splitting a quadrangle into two triangles

The point_in_quadarangle() subr outine simply calls point_in_triangle() twice,
one for each triangle resulting from the split:

point_in_quadrangle($x, $y, $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3)
Return true if the point ($x,$y) is inside the quadrangle
defined by the points p0 ($x0,$y0), p1, p2, and p3.
Simply uses point_in_triangle.
#

sub point_in_quadrangle {
my ($x, $y, $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3) = @_;

return point_in_triangle($x, $y, $x0, $y0, $x1, $y1, $x2, $y2) ||
point_in_triangle($x, $y, $x0, $y0, $x2, $y2, $x3, $y3)

}

point_in_quadrangle() will be demonstrated with the quadrangle and points
shown in Figure 10-15.

6 August 1999 15:40

1,4

5,5

6,2

3,0

x

y

Figur e 10-15. Determining whether a point is in a quadrangle

The quadrangle’s vertices are at (1, 4), (3, 0), (6, 2), and (5, 5), so that’s what we’ll
pr ovide:

@quadrangle = (1, 4, 3, 0, 6, 2, 5, 5);
print "(0, 2): ", point_in_quadrangle(0, 2, @quadrangle), "\n";
print "(1, 4): ", point_in_quadrangle(1, 4, @quadrangle), "\n";
print "(2, 2): ", point_in_quadrangle(2, 2, @quadrangle), "\n";
print "(3, 6): ", point_in_quadrangle(3, 6, @quadrangle), "\n";
print "(3, 4): ", point_in_quadrangle(3, 4, @quadrangle), "\n";
print "(4, 2): ", point_in_quadrangle(4, 2, @quadrangle), "\n";
print "(5, 4): ", point_in_quadrangle(5, 4, @quadrangle), "\n";

The output:

(0, 2): 0
(1, 4): 1
(2, 2): 1
(3, 6): 0
(3, 4): 1
(4, 2): 1
(5, 4): 1
(6, 2): 1

This means that the points (0, 2) and (3, 6) are outside the quadrangle and the rest
ar e inside.

Boundar ies
In this section, we explore the boundaries of geometric objects, which we can use
to determine whether objects seem to overlap. We say “seem” because these
boundaries give only the first approximation: concave objects confuse the issue.

Boundar ies 449

6 August 1999 15:40

450 Chapter 10: Geometric Algor ithms

Bounding Box
The bounding box of a geometric object is defined as the smallest d-dimensional
box containing the d-dimensional object where the sides align with the axes. The
bounding box can be used in video games to determine whether objects just col-
lided. Three bounding boxes are shown in Figure 10-16.

Figur e 10-16. A polygon and its bounding box (dotted line)

The bounding_box() subr outine retur ns an array of points. For $d = 2 dimensions,
the bounding box will be a rectangle, and so bounding_box() retur ns four ele-
ments: two corners of the rectangle.

bounding_box_of_points($d, @p)
Return the bounding box of the set of $d-dimensional points @p.

sub bounding_box_of_points {
my ($d, @points) = @_;

my @bb;

while (my @p = splice @points, 0, $d) {
@bb = bounding_box($d, @p, @bb); # Defined below.

}

return @bb;
}

bounding_box($d, @p [,@b])
Return the bounding box of the points @p in $d dimensions.
The @b is an optional initial bounding box: we can use this
to create a cumulative bounding box that includes boxes found
by earlier runs of the subroutine (this feature is used by
bounding_box_of_points()).
#
The bounding box is returned as a list. The first $d elements
are the minimum coordinates, the last $d elements are the
maximum coordinates.

6 August 1999 15:40

sub bounding_box {
my ($d, @bb) = @_; # $d is the number of dimensions.
Extract the points, leave the bounding box.
my @p = splice(@bb, 0, @bb - 2 * $d);

@bb = (@p, @p) unless @bb;

Scan each coordinate and remember the extrema.
for (my $i = 0; $i < $d; $i++) {

for (my $j = 0; $j < @p; $j += $d) {
my $ij = $i + $j;
The minima.
$bb[$i] = $p[$ij] if $p[$ij] < $bb[$i];
The maxima.
$bb[$i + $d] = $p[$ij] if $p[$ij] > $bb[$i + $d];

}
}

return @bb;
}

bounding_box_intersect($d, @a, @b)
Return true if the given bounding boxes @a and @b intersect
in $d dimensions. Used by line_intersection().

sub bounding_box_intersect {
my ($d, @bb) = @_; # Number of dimensions and box coordinates.
my @aa = splice(@bb, 0, 2 * $d); # The first box.
(@bb is the second one.)

Must intersect in all dimensions.
for (my $i_min = 0; $i_min < $d; $i_min++) {

my $i_max = $i_min + $d; # The index for the maximum.
return 0 if ($aa[$i_max] + epsilon) < $bb[$i_min];
return 0 if ($bb[$i_max] + epsilon) < $aa[$i_min];

}

return 1;
}

To demonstrate, we’ll find the bounding box of the polygon in Figure 10-17. We
pass bounding_box_of_points() 21 arguments: the dimension 2 and the 10 pairs of
coordinates describing the 10 points in Figure 10-17:

@bb = bounding_box_of_points(2,
1, 2, 5, 4, 3, 5, 2, 3, 1, 7,
2, 5, 5, 7, 7, 4, 5, 5, 6, 1), "\n";

print "@bb\n";

The result is the lower-left and upper-right vertices of the square, (1, 1) and (7, 7):

1 1 7 7

Boundar ies 451

6 August 1999 15:40

452 Chapter 10: Geometric Algor ithms

x

y

x

y

Figur e 10-17. A polygon and its bounding box

Conve x Hull
A convex hull is like a bounding box that fits even more closely because it doesn’t
have to be a box at all. The convex hull is stretched along the outermost possible
points, like a rubber band around a collection of nails hammered into a board.
(Imagine you’re Christo, trying to plastic-wrap a forest. The plastic wrap forms a
convex hull.)

In two dimensions, the convex hull is the set of edges of some convex polygon.
In three dimensions, the convex hull is the set of sides of a convex polyhedron, all
of whose sides are triangular. A two-dimensional convex hull is shown in
Figur e 10-18.

Figur e 10-18. The convex hull of a point set

The most well-known algorithm for finding the convex hull in two dimensions is
Graham’s scan. It begins by finding one point known for a fact to lie on the hull,

6 August 1999 15:40

typically the point having the smallest x-coordinate or the point having the small-
est y-coordinate. This is demonstrated in Figure 10-19(a).

a b c

d e

Figur e 10-19. Graham’s scan: find a starting point

All the other points are then sorted according to the angle they make with the
starting point, illustrated in Figure 10-19(b). Because of how we chose the starting
point, the angles are guaranteed to be between 0 and π radians.

The initial hull then starts from the minimum point and goes to the first of these
sorted points. A complication develops when the next point is directly ahead
along the hull. This can be taken care of by mor e intricate sorting: if the angles are
equal, we sort on the x- and y-coordinates.

Now we look for the next point: whenever we must turn left to go to the next
point, we add that next point to the hull.

If, however, we must turn right, the point we just added to the hull cannot be in
the hull and must be removed. This removal may escalate backwards until we
again turn left. This growing and shrinking of the hull suggests the use of a stack
(described in the section “Stacks” in Chapter 2, Basic Data Structures).

Boundar ies 453

6 August 1999 15:40

454 Chapter 10: Geometric Algor ithms

As you can see, the “no-right-turns” policy backs away from concavities (shaded in
Figur e 10-19(e)), leaving only the convex hull. The above process is continued in
the angle order until we retur n to the starting point. The Graham’s scan algorithm
is calculated by convex_hull_graham():

convex_hull_graham(@xy)
Compute the convex hull of the points @xy using the Graham's scan.
Returns the convex hull points as a list of ($x,$y,...).

sub convex_hull_graham {
my (@xy) = @_;

my $n = @xy / 2;
my @i = map { 2 * $_ } 0 .. ($#xy / 2); # The even indices.
my @x = map { $xy[$_] } @i;
my @y = map { $xy[$_ + 1] } @i;

First find the smallest y that has the smallest x.

$ymin is the smallest y so far, @xmini holds the indices
of the smallest y(s) so far, $xmini will the index of the
smallest x, $xmin the smallest x.
my ($ymin, $xmini, $xmin, $i);

for ($ymin = $ymax = $y[0], $i = 1; $i < $n; $i++) {
if ($y[$i] + epsilon < $ymin) {

$ymin = $y[$i];
@xmini = ($i);

} elsif (abs($y[$i] - $ymin) < epsilon) {
$xmini = $i # Remember the index of the smallest x.

if not defined $xmini or $x[$i] < $xmini;
}

}

$xmin = $x[$xmini];
splice @x, $xmini, 1; # Remove the minimum point.
splice @y, $xmini, 1;

my @a = map { # Sort the points according to angle with that point.
atan2($y[$_] - $ymin,

$x[$_] - $xmin)
} 0 .. $#x;

An unusual Schwartzian Transform. This leaves us the sorted
indices so that we can apply the sort multiple times -- a permutation.

my @j = map { $_->[0] }
sort { # Sort by the angles, then by x, then by y.

return $a->[1] <=> $b->[1] ||
$x[$a->[0]] <=> $x[$b->[0]] ||
$y[$a->[0]] <=> $y[$b->[0]];

}
map { [$_, $a[$_]] } 0 .. $#a;

6 August 1999 15:40

@x = @x[@j]; # Permute.
@y = @y[@j];
@a = @a[@j];

unshift @x, $xmin; # Put back the minimum point.
unshift @y, $ymin;
unshift @a, 0;

my @h = (0, 1); # The hull.
my $cw;

Backtrack: while there are right turns or no turns, shrink the hull.
for ($i = 2; $i < $n; $i++) {

while (
clockwise($x[$h[$#h - 1]],

$y[$h[$#h - 1]],
$x[$h[$#h]],
$y[$h[$#h]],
$x[$i],
$y[$i]) < epsilon

and @h >= 2) { # Keep two points in hull at all times.
pop @h;

}
push @h, $i; # Grow the hull.

}

Interlace x's and y's of the hull back into one list, and return.
return map { ($x[$_], $y[$_]) } 0 .. $#h;

}

We can speed up Graham’s scan by reducing the number of points that the scan
needs to consider. One way to do that is interior elimination: thr ow away all the
points that are known not to be in the convex hull. This knowledge depends on
the distribution of the points: if the distribution is random or even in both direc-
tions, a marvelous interior eliminator would be a rectangle stretched between the
points closest to the corners. All the points strictly inside the rectangle can be
immediately eliminated, as shown in Figure 10-20.

The points closest to the corners can be located by minimizing and maximizing
the sums and differ ences of points:

• smallest sum: lower-left corner

• largest sum: upper-right corner

• smallest differ ence: upper-left corner

• largest differ ence: lower-right corner

Boundar ies 455

6 August 1999 15:40

456 Chapter 10: Geometric Algor ithms

eliminatedKEY:

Figur e 10-20. Graham’s scan: interior elimination for obviously internal points

In Perl, this would be something like the following:

Find out the largest and smallest sums and differences
(or rather, the indices of those points).

my @sort_by_sum =
map { $_->[0] }

sort { $a->[1] <=> $b->[1] }
map { [$_, $x[$_] + $y[$_]] } 0..$#x;

my @sort_by_diff =
map { $_->[0] }

sort { $a->[1] <=> $b->[1] }
map { [$_, $x[$_] - $y[$_]] } 0..$#x;

my $ll = $sort_by_sum [0]; # Lower left (of the elimination box).
my $ur = $sort_by_sum [-1]; # Upper right.
my $ul = $sort_by_diff[0]; # Upper left.
my $lr = $sort_by_diff[-1]; # Lower right.

This approach has a problem, though: we can safely eliminate only the points
strictly in the interior of the quadrangle. Points on the quadrangle edges might still
be part of the hull, and points exactly at the vertices will be on the hull. One way
to proceed is to construct a smaller quadrangle that is some tiny (epsilon) distance
inside of the larger quadrangle. If we choose epsilon well, the points inside the
smaller quadrangle will be strictly interior points and can immediately be elimi-
nated from our scan.

The time complexity of graham_scan() is O (N log N), which is optimal.

6 August 1999 15:40

Closest Pair of Points
Given a set of points, which two are closest to one another? The obvious solution
of simply calculating the distance between every possible pair of points works, but
not well: it’s O (N 2). A practical application would be traffic simulation and con-
tr ol: two jumbo jets shouldn’t occupy the same space. While bounding boxes are
used to detect collisions, closest points are used to anticipate them. We’ll use the
set of points in Figure 10-21 as our example.

Figur e 10-21. A set of points and the closest pair

We can use the intrinsic locality of the points to attack this problem: A point on
the left side is likely to be closer to other points on the left than to points on the
right. We will once again use the divide-and-conquer paradigm (see the section
“Recurr ent Themes in Algorithms”), recursively dividing the set of points into left
and right halves, as shown in Figure 10-22.

Figur e 10-22. Recursive halving: a physical and a logical view

Wondering about the wiggly line of the logical view in Figure 10-22? The halfway
of the point set happens to fall on two points that have exactly the same

Closest Pair of Points 457

6 August 1999 15:40

458 Chapter 10: Geometric Algor ithms

x-coordinate, so we also show the “logical” view where the dividing line is wig-
gled ever so slightly to disambiguate the halves.

In Figure 10-23, the vertical slices resulting from the left-right recursion are shown.
The slices are labeled; for example, lrr is the slice resulting from a left cut fol-
lowed by two right cuts.

the closest pair of the three points

the closest pair of the
two points

ll lrl lrr rl rrl rrr

Figur e 10-23. All the recursed slices and their closest pairs

The recursion stops when a slice contains only two or three points. In such a case,
the shortest distance, or, in other words, the closest pair of points, can be found
trivially (see Figure 10-24).

ll lrl lrr rl rrl rrr

the shortest distanceKEY:

Figur e 10-24. Merging the recursed slices

But what should we do when retur ning fr om the recursion? Each slice has its own
idea of its shortest distance. We cannot simply choose the minimum distance of

6 August 1999 15:40

the left and right slices because the globally closest pair might straddle the divid-
ing line, illustrated in Figure 10-25.

Figur e 10-25. The maximal merging scan: the current point is marked white

The trick is as follows: for each dividing line, we must find which points in the
bordering halves are closer to the dividing line than the shortest distance found so
far. After that we walk these points in y-order. For one point we need to check, at
most, the seven other points shown in Figure 10-25.

The resulting Perl code is somewhat complex because it needs to maintain several
orderings of the point set simultaneously: the original ordering, the points ordered
horizontally (this is how we divide the point set horizontally), and the points
order ed vertically (scanning the straddling points). These multiple views of the
same point sets are implemented by computing various per mutation vectors imple-
mented as Perl arrays. For example, @yoi contains the “vertical rank” of every
point, from bottom to top.

Also note that the basic divide-and-conquer technique yields a seemingly
O (N log N) algorithm, but this assumes that the recursion requir es only O (N)
operations. We cannot repeatedly sort() (in either direction) within the recursion
without jeopardizing our O (N log N) rating, so we perfor m the horizontal and ver-
tical sorts once and then recurse.

Her e, then, is the frighteningly long closest_points() subr outine:

sub closest_points {
my (@p) = @_;

return () unless @p and @p % 2 == 0;

my $unsorted_x = [map { $p[2 * $_] } 0..$#p/2];
my $unsorted_y = [map { $p[2 * $_ + 1] } 0..$#p/2];

Compute the permutation and ordinal indices.

X Permutation Index.
#
If @$unsorted_x is (18, 7, 25, 11), @xpi will be (1, 3, 0, 2),
e.g., $xpi[0] == 1 meaning that the $sorted_x[0] is in

Closest Pair of Points 459

6 August 1999 15:40

460 Chapter 10: Geometric Algor ithms

$unsorted_x->[1].
#
We do this because we may now sort @$unsorted_x to @sorted_x
and can still restore the original ordering as @sorted_x[@xpi].
This is needed because we will want to sort the points by x and y
but might also want to identify the result by the original point
indices: "the 12th point and the 45th point are the closest pair".

my @xpi = sort { $unsorted_x->[$a] <=> $unsorted_x->[$b] }
0..$#$unsorted_x;

Y Permutation Index.
#
my @ypi = sort { $unsorted_y->[$a] <=> $unsorted_y->[$b] }

0..$#$unsorted_y;

Y Ordinal Index.
#
The ordinal index is the inverse of the permutation index: If
@$unsorted_y is (16, 3, 42, 10) and @ypi is (1, 3, 0, 2), @yoi
will be (2, 0, 3, 1), e.g. $yoi[0] == 1 meaning that
$unsorted_y->[0] is the $sorted_y[1].

my @yoi;
@yoi[@ypi] = 0..$#ypi;

Recurse to find the closest points.
my ($p, $q, $d) = __closest_points_recurse([@$unsorted_x[@xpi]],

[@$unsorted_y[@xpi]],
\@xpi, \@yoi, 0, $#xpi

);

my $pi = $xpi[$p]; # Permute back.
my $qi = $xpi[$q];

($pi, $qi) = ($qi, $pi) if $pi > $qi; # Smaller id first.
return ($pi, $qi, $d);

}

sub _closest_points_recurse {
my ($x, $y, $xpi, $yoi, $x_l, $x_r) = @_;

$x, $y: array references to the x- and y-coordinates of the points
$xpi: x permutation indices: computed by closest_points_recurse()
$yoi: y ordering indices: computed by closest_points_recurse()
$x_l: the left bound of the currently interesting point set
$x_r: the right bound of the currently interesting point set
That is, only points $x->[$x_l..$x_r] and $y->[$x_l..$x_r]
will be inspected.

my $d; # The minimum distance found.
my $p; # The index of the other end of the minimum distance.
my $q; # Ditto.

6 August 1999 15:40

my $N = $x_r - $x_l + 1; # Number of interesting points.

if ($N > 3) { # We have lots of points. Recurse!
my $x_lr = int(($x_l + $x_r) / 2); # Right bound of left half.
my $x_rl = $x_lr + 1; # Left bound of right half.

First recurse to find out how the halves do.

my ($p1, $q1, $d1) =
_closest_points_recurse($x, $y, $xpi, $yoi, $x_l, $x_lr);

my ($p2, $q2, $d2) =
_closest_points_recurse($x, $y, $xpi, $yoi, $x_rl, $x_r);

Then merge the halves' results.

Update the $d, $p, $q to be the closest distance
and the indices of the closest pair of points so far.

if ($d1 < $d2) { $d = $d1; $p = $p1; $q = $q1 }
else { $d = $d2; $p = $p2; $q = $q2 }

Then check the straddling area.

The x-coordinate halfway between the left and right halves.
my $x_d = ($x->[$x_lr] + $x->[$x_rl]) / 2;

The indices of the "potential" points: those point pairs
that straddle the area and have the potential to be closer
to each other than the closest pair so far.
#
my @xi;

Find the potential points from the left half.

The left bound of the left segment with potential points.
my $x_ll;

if ($x_lr == $x_l) { $x_ll = $x_l }
else { # Binary search.

my $x_ll_lo = $x_l;
my $x_ll_hi = $x_lr;
do { $x_ll = int(($x_ll_lo + $x_ll_hi) / 2);

if ($x_d - $x->[$x_ll] > $d) {
$x_ll_lo = $x_ll + 1;

} elsif ($x_d - $x->[$x_ll] < $d) {
$x_ll_hi = $x_ll - 1;

}
} until $x_ll_lo > $x_ll_hi

or ($x_d - $x->[$x_ll] < $d
and ($x_ll == 0 or

$x_d - $x->[$x_ll - 1] > $d));
}
push @xi, $x_ll..$x_lr;

Closest Pair of Points 461

6 August 1999 15:40

462 Chapter 10: Geometric Algor ithms

Find the potential points from the right half.

The right bound of the right segment with potential points.
my $x_rr;

if ($x_rl == $x_r) { $x_rr = $x_r }
else { # Binary search.

my $x_rr_lo = $x_rl;
my $x_rr_hi = $x_r;
do { $x_rr = int(($x_rr_lo + $x_rr_hi) / 2);

if ($x->[$x_rr] - $x_d > $d) {
$x_rr_hi = $x_rr - 1;

} elsif ($x->[$x_rr] - $x_d < $d) {
$x_rr_lo = $x_rr + 1;

}
} until $x_rr_hi < $x_rr_lo

or ($x->[$x_rr] - $x_d < $d
and ($x_rr == $x_r or

$x->[$x_rr + 1] - $x_d > $d));
}
push @xi, $x_rl..$x_rr;

Now we know the potential points. Are they any good?
This gets kind of intense.

First sort the points by their original indices.

my @x_by_y = @$yoi[@$xpi[@xi]];
my @i_x_by_y = sort { $x_by_y[$a] <=> $x_by_y[$b] }

0..$#x_by_y;
my @xi_by_yi;
@xi_by_yi[0..$#xi] = @xi[@i_x_by_y];

my @xi_by_y = @$yoi[@$xpi[@xi_by_yi]];
my @x_by_yi = @$x[@xi_by_yi];
my @y_by_yi = @$y[@xi_by_yi];

Inspect each potential pair of points (the first point
from the left half, the second point from the right).

for (my $i = 0; $i <= $#xi_by_yi; $i++) {
my $i_i = $xi_by_y[$i];
my $x_i = $x_by_yi[$i];
my $y_i = $y_by_yi[$i];
for (my $j = $i + 1; $j <= $#xi_by_yi; $j++) {

Skip over points that can't be closer
to each other than the current best pair.
last if $xi_by_y[$j] - $i_i > 7; # Too far?
my $y_j = $y_by_yi[$j];
my $dy = $y_j - $y_i;
last if $dy > $d; # Too tall?
my $x_j = $x_by_yi[$j];
my $dx = $x_j - $x_i;
next if abs($dx) > $d; # Too wide?

6 August 1999 15:40

Still here? We may have a winner.
Check the distance and update if so.
my $d3 = sqrt($dx**2 + $dy**2);
if ($d3 < $d) {

$d = $d3;
$p = $xi_by_yi[$i];
$q = $xi_by_yi[$j];

}
}

}
} elsif ($N == 3) { # Just three points? No need to recurse.

my $x_m = $x_l + 1;
Compare the square sums and leave the sqrt for later.
my $s1 = ($x->[$x_l]-$x->[$x_m])**2 +

($y->[$x_l]-$y->[$x_m])**2;
my $s2 = ($x->[$x_m]-$x->[$x_r])**2 +

($y->[$x_m]-$y->[$x_r])**2;
my $s3 = ($x->[$x_l]-$x->[$x_r])**2 +

($y->[$x_l]-$y->[$x_r])**2;
if ($s1 < $s2) {

if ($s1 < $s3) { $d = $s1; $p = $x_l; $q = $x_m }
else { $d = $s3; $p = $x_l; $q = $x_r }

} elsif ($s2 < $s3) { $d = $s2; $p = $x_m; $q = $x_r }
else { $d = $s3; $p = $x_l; $q = $x_r }

$d = sqrt $d;
} elsif ($N == 2) { # Just two points? No need to recurse.

$d = sqrt(($x->[$x_l]-$x->[$x_r])**2 +
($y->[$x_l]-$y->[$x_r])**2);

$p = $x_l;
$q = $x_r;

} else { # Less than two points? Strange.
return ();

}

return ($p, $q, $d);
}

The time complexity of closest_points() is O (N log N), which should be both a
familiar expression and good news by now. We’ll test it with the points in
Figur e 10-26.

We can find the closest pair of points out of the set of ten points in Figure 10-26 as
follows:

@clopo = closest_points(1, 2, 2, 5, 3, 1, 3, 3, 4, 5,
5, 1, 5, 6, 6, 4, 7, 4, 8, 1), "\n";

print "@clopo\n";

The result:

7 8 1

Closest Pair of Points 463

6 August 1999 15:40

464 Chapter 10: Geometric Algor ithms

x

y

0
1
2
3
4
5
6
7

1 2 3 4 5 6 7 8

Figur e 10-26. An example of the closest pair of points problem

This tells us that the eighth and ninth points—(6, 4) and (7, 4), since Perl arrays
ar e zer o-indexed—are the closest pair of points, and that they have a distance
of 1.

Geometr ic Algor ithms Summar y
Geometric algorithms are often based on familiar geometry formulas, but be care-
ful: often, translating them to a computer program is not as straightforward as it
might seem. The main source of problems is the conflict between the ideal num-
bers of mathematics and the inaccurate repr esentation of real numbers in comput-
ers (discr etization is the fancy name for this unavoidable translation). You may
think a point lies exactly at the intersection of x − 1 and 1 − 2x, but that’s not what
your computer thinks. And your circle of radius 1 doesn’t contain π pixels, either.

CPAN Graphics Modules
The algorithms we discussed in this chapter never actually paint points on your
scr een. For that, you need one of the packages discussed in this section. Most of
these modules are inter faces to external libraries; you need to install those libraries
first. The documentation bundled with the modules tells you where to find them.
The modules themselves can all be found at http://www.perl.com/CPAN/modules.

2-D Images
Ther e ar e five CPAN modules for manipulating two-dimensional images: Perl-
Gimp, GD, Image::Size, PerlMagick, and PGPLOT.

6 August 1999 15:40

Perl-Gimp

The Gimp is a popular Linux utility similar to Adobe Photoshop; see
http://www.gimp.or g. Perl-Gimp, by Marc Lehman, is a Perl API to Gimp, letting
you warp, speckle, shadow, and perfor m countless other effects on your images.

GD

The GD module, by Lincoln D. Stein, is an interface to libgd, a library that allows
you to “draw” GIF images. For example, you can produce a GIF image of a circle
like this:

use GD;

Create the image.
my $gif = new GD::Image(100, 100);

Allocate colors.
my $white = $gif->colorAllocate(255, 255, 255);
my $red = $gif->colorAllocate(255, 0, 0);

Background color.
$gif->transparent($white);

The circle.
$gif->arc(50, 50, # Center x, y.

30, 30, # Width, Height.
0, 360, # Start Angle, End Angle.
$red); # Color.

Output the image.
open(GIF, ">circle.gif") or die "open failed: $!\n";
binmode GIF;
print GIF $gif;
close GIF;

Image::Size

Randy J. Ray’s Image::Size is a special-purpose module for peeking at graphics
files and determining their size or dimensions. This may sound like a strangely
specific task, but it has a very common and important real-world use. When a web
server is transmitting a web page, it should print out the image size as soon as
possible, before transmitting the actual image. That way, the web browser can ren-
der bounding boxes of the images as soon as possible. That enables a much
smoother rendering process because the page layout won’t jump abruptly when
the images finally arrive.

CPAN Graphics Modules 465

6 August 1999 15:40

466 Chapter 10: Geometric Algor ithms

PerlMag ick

The PerlMagick module, by Kyle Shorter, is an inter face to ImageMagick, an exten-
sive image conversion and manipulation library. You can convert from one graph-
ics format to another and manipulate the images with all kinds of filters ranging
fr om color balancers to cool special effects. See http://www.wizar ds.dupont.com/
cristy/www/perl.html.

PGPLOT

Karl Glazebrook’s PGPLOT module is an interface to the PGPLOT graphics library.
You can use PGPLOT to draw images with labels and all that, but coupled with
the PDL numerical language (yet another Perl module, see Chapter 7) it becomes a
very powerful tool indeed. Because all the power of Perl is available to PDL, it’s
getting scary. See http://www.ast.cam.ac.uk/AAO/local/www/kgb/pgperl/ for more
infor mation.

Char ts a.k.a. Business Graphics
If by “graphics” you mean “business graphics” (bar charts, pie charts, and the like),
check out the Chart and GIFgraph modules, by David Bonner and Martien Ver-
bruggen. You can use them, say, to create web site usage reports on the fly. They
both requir e the GD module.

3-D Modeling
Only in recent years has realistic three-dimensional modeling become possible on
computers that everyone can afford. Three toolkits have freely available CPAN
modules: OpenGL, Renderman, and VRML.

OpenGL

Stan Melax’ OpenGL module implements the OpenGL interface for Perl. OpenGL
is an open version of Silicon Graphics’ GL language; it’s a 3-D modeling language
with which you can define your “worlds” with complex objects and lighting condi-
tions. The popular Quake game is render ed using OpenGL. There is a publicly
available implementation of OpenGL called Mesa ; see http://www.mesa3d.or g/.

Render man

The Renderman module, by Glenn M. Lewis, is an interface to the Pixar’s Render-
man photorealistic modeling system. You may now start writing your own Toy
Story with Perl.

6 August 1999 15:40

VRML

Hartmut Palm has implemented a Perl interface to the Virtual Reality Markup Lan-
guage, which lets you define a three-dimensional world and output the VRML
describing it. If people visiting your web site have the appropriate plug-in, they
can walk around in your world. The module is called, rather unsurprisingly, VRML.

Widget/GUI Toolkits
If you want to develop your own graphical application independent of the Web,
you’ll need one of the packages described in this section. Perl/Tk is far and away
the most feature-filled and portable system.

Perl/Tk

Perl/Tk, by Nick Ing-Simmons, is the best graphical widget toolkit available for
Perl.* It works under the X11 Window System and under Windows 95/98/NT/2K.

Perl/Tk is easy to launch. Here’s a minimal program that displays a button:

use Tk;
$MW = MainWindow->new;
$hello = $MW->Button(

-text => 'Hello, world',
-command => sub { print STDOUT "Hello, world!\n"; exit; },

);
$hello->pack;
MainLoop;

The button has an action bound to it: when you press it, Hello, world! is printed
to the controlling terminal. You can implement sophisticated graphical user inter-
faces and graphical applications with Tk, and it’s far too large a subject to cover in
this book. In fact, Tk is worthy of a book of its own: Lear ning Perl/Tk, by Nancy
Walsh (O’Reilly & Associates).

Other windowing toolkits

Ther e ar e Perl bindings for several other windowing toolkits. The toolkits mainly
work only under the X Window System used in Unix environments, but some
have upcoming Windows ports (Gtk, as of mid 1999).

* Perl’s Tk module should not be confused with the Tk toolkit, which was originally written by John
Ousterhout for use with his programming language, Tcl. The Tk toolkit is language-independent,
and that’s why it can interface with, for example, Perl. The Perl/Tk module is an interface to the
toolkit.

CPAN Graphics Modules 467

6 August 1999 15:40

468 Chapter 10: Geometric Algor ithms

Gnome by Kenneth Albanowski
The GNU Object Model Environment (http://www.gnome.or g)

Gtk by Kenneth Albanowski
The toolkit originally used by Gimp

Sx by Frederic Chaveau
Simple Athena Widgets for X

X11::Motif by Ken Fox
A Motif toolkit

6 August 1999 15:40

